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Abstract
The time evolution of a coagulating mixture in which binary coagulation
governs the temporal changes to the particle mass and composition spectra
is studied under the assumption that the coagulation kernel is proportional to
the product of masses of the first and the second components in the coalescing
particles. This model is shown to reveal the sol–gel transition, i.e., the formation
of a cluster with mass comparable to the total mass of the whole system. This
letter reports on the exact solution of this model. The evolution equation for the
generating functional defining all properties of coagulating systems is solved
exactly for this particular kernel. The single-particle mass spectrum is analysed
in the thermodynamic limit and it is demonstrated how the gel appears in this
mixed system.

PACS numbers: 02.50.−r, 05.90.+m, 64.60.Qb

In contrast to the coagulation of unary systems which has been studied comparatively well
(see the review article by Leyvraz (2003)), little is known about the behaviour of coagulating
mixtures. My earlier paper (Lushnikov 1976) was probably the first where the coagulation
mixtures were considered. The evolution of the particle composition spectrum is of importance
and it can be often determined from simple combinatorial considerations, especially if the
collision efficiency leading to the particle coalescence depends on the total mass of the
colliding particles rather than on their composition.

The model proposed below considers a coagulating mixture wherein the efficiency of
coagulation principally depends on the particle composition. For two particles comprising
respectively m1, n1 and m2, n2 monomers (green and red ones, for definiteness) this efficiency
(coagulation kernel) is introduced as

K(m1, n1|m2, n2) ∝ m1n2 + m2n1. (1)

This kernel gives a dimensionless rate of the process (m1, n1) + (m2, n2) −→ (m1 + m2,

n1 + n2). The kernel (1) describes realistic processes such as copolymerization (see e.g.,
a review of Soteros and Whittington (2004)) or time evolution of bipartite graphs (better to
say, a bipartite forest, where an appearing edge is forbidden to create cycles). In the latter case,
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the number of ways for the edge to join two trees having respectively m1, n1 and m2, n2 green
and red vertices is exactly K given by equation (1). Next, coagulation in such systems leads
to the sol–gel transition, i.e., a giant object containing a macroscopic number of monomers
(gel) (or a giant component in an evolving random graph (Albert and Barabasi 2002)) appears
in a finite interval of time (see the details in my recent articles (Lushnikov 2004, 2005)). The
kinetics of pregelation stage of the coagulating mixture had been studied by Domilovskii,
Lushnikov and Piskunov (1978).

In what follows I apply the approach (Marcus 1968, Lushnikov 1978, 2004, 2005) that
operates with the occupation numbers (numbers of m, n-mers) and the probability to find a
given set of occupation number at time t. The generating functional � for this probability
obeys the evolution equation,

V ∂t� = L̂�, (2)

where the generating functional depends on the set of variables X = {x(m, n)}, V is the
volume of the coagulating system and the evolution operator L̂ has the form:

L̂ = 1

2

[∑
m,n

(m1n2 + m2n1)x(m1 + m2, n1 + n2)
∂2

∂x(m1, n1)∂x(m2, n2)
− M̂rMg − MrM̂g

]
,

(3)

where M̂g,r is the operator of the total mass of green or red monomers respectively,
M̂g = ∑

m,n mx(m, n)∂x(m,n) and M̂r = ∑
m,n nx(m, n)∂x(m,n). The integers Mg , and Mr are

the eigenvalues of these operators, the total numbers of green and red monomers respectively.
The coagulation process does not change these numbers.

Below we shall follow the route that I have applied to the model K ∝ gl (Lushnikov
2004, 2005). We construct the mass conserving solution in the form

� = Mg!Mr !Coefξ,ηξ
−Mg−1η−Mr−1 exp

[∑
m,n

x(m, n)am,n(t)ξ
mηn

]
. (4)

Here the notation Coef introduced by Egorychev (1977) is used instead of contour integrals.
The point is that this operation allows for dealing with divergent series, where a normal
integration is inapplicable. The operation Coef is defined as

Coefξ,η

∑
m,n

bm,nξ
mηn = b−1,−1. (5)

If the sum on the left-hand side of this equation converges the operation Coef can be replaced
by respective integrals. The operation Coef displays many features of ordinary residues. It
is easy to check that the functional � given by equation (4) is the eigenfunctional of M̂g

and M̂r .
The particle mass spectrum n̄m,n(t) is expressed in terms of am,n(t) as follows:

n̄m,n(t) = ∂x(m,n)�|X=1 = Mg!Mr !am,n(t) Coefξ,ηξ
−Mg+m−1η−Mr +n−1 exp[G(ξ, η; t)]. (6)

Here G(ξ, η; t) = ∑
m,n am,n(t)ξ

mηn is the bivariate generating function for am,n(t).
Substituting � in the form (4) into equation (2) yields the following set of equations

for a,

V dtam,n(t) =
m.n∑

k,l=0

(m − l)kam−l,n−k(t)al,k(t) + mnam,n(t) − 1

2
(Mrm + Mgn)am,n(t). (7)

This set is subject to the condition corresponding to initially monodisperse particles,
am,n(0) = δm,1δn,0 + δm,0δn,1.
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The equation for the generating function G can be readily derived from equation (7),

V
∂G

∂t
= ξ

∂G

∂ξ
η
∂G

∂η
+ ξη

∂2G

∂ξ∂η
− 1

2

(
Mrξ

∂G

∂ξ
+ Mgη

∂G

∂η

)
. (8)

The initial condition to this equation is G(ξ, η; 0) = ξ + η.
Now let G(ξ, η; t) = D(ξ e−Mr t/2, η e−Mg t/2; t), where Mg = Mg/V,Mr = Mr/V .

Then, instead of equation (7) we find a linear equation for eD ,

V
∂ eD

∂t
= ξη

∂2 eD

∂ξ∂η
. (9)

The formal solution to this equation with the initial condition eD(ξ,η;0) = eξ+η is

eD =
∑
m,n

ξmηn

m!n!
exp(mnt/V ). (10)

From this equation we can find

Coefξ,ηξ
−Mg+m−1η−Mr +n−1 exp[G(ξ, η; t)] = exp(−mMr t/2 − nMgt/2 + mnt/V )

(Mg − m)!(Mr − n)!
. (11)

The central difficulty is how to find am,n(t). The identity

ln

( ∞∑
m,n=0

ξmηn

m!n!
xmn

)
=

∞∑
m,n=0

ξmηn

m!n!
(1 − x)m+n−1Fm−1,n−1(x), (12)

solves this problem. Here F0,−1(x) = F0,−1(x) = 1 and F−1,−1(x) = 0. The polynomials
Fm,n(x) are introduced by the recurrence

Fm+1,n+1(x) =
∑
p,q

(
m + 1

m + 1 − q

)(
n + 1

n + 1 − p

)
Fm−q,p(x)Fq,n−p(x)

xp+1 − 1

x − 1
. (13)

The lowest order polynomials are F0,0 = 0, F0,1 = F1,0 = 1 and

F1,1(x) = x + 3, F1,2(x) = F2,1(x) = x2 + 4x + 7,

F2,2(x) = x4 + 5x3 + 15x2 + 29x + 31, . . .

Another set of polynomials Pm,n(δ) = Fm,n(1+δ) is more convenient. These polynomials
are introduced by two bivariate exponential generating functions

Xδ(ξ, η) =
∑

Pm,n−1(δ)
ξmηn

m!n!
Yδ(ξ, η) =

∑
Pm−1,n(δ)

ξmηn

m!n!
. (14)

These functions satisfy a set of integral equations,

ln Xδ(ξ, η) = η

∫ 1

0
Yδ[ξ, (1 + uδ)η] du, ln Yδ(ξ, η) = ξ

∫ 1

0
Xδ[(1 + uδ)ξ, η] du. (15)

These equations are given here without a derivation. The limited scopes of the letter do not
permit me to reproduce it here, but the analogy between Fm,n(x) and the Mallows–Riordan
polynomials used in my recent works (Lushnikov 2004, 2005; see also references therein) is
apparent. The derivation of equations (13)–(15) follows the same route as in these works and
will be given elsewhere.

Equations (6), (11) and (12) allow us to restore the exact particle composition spectrum,

n̄m,n(t) =
(

Mg

m

) (
Mr

n

)
emnt/V −mMr t−nMg t (et/V − 1)m+n−1Fm−1,n−1(e

t/V ). (16)

In order to investigate the behaviour of the composition spectrum in the thermodynamic
limit, we need an asymptotic formula for Pm,n(δ) in the limit m, n −→ ∞.δ −→ 0, µ,
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ν = m/V, n/V < ∞. This formula can be derived exactly along the same line as
equation (28) of Lushnikov (2005). The final result is

Pm,n(δ) ∝ mnnmhm(nδ)hn(mδ), (17)

where h(x) = 2x−1 sinh x/2.
Applying the Stirling formula to equation (16) and using equation (17) yield

nm,n(t) ∝ eF(µ,ν;t). (18)

Here µ = m/V, ν = n/V, V = M + N and

F(µ, ν; t) = −Mg[(1 − µ) ln(1 − µ) + µ ln µ] − Mr [(1 − ν) ln(1 − ν) + ν ln ν]

− MgMr(µ + ν − 2µν)t/V + Mrν ln(1 − eMgµt ) + Mgµ ln(1 − eMr νt ). (19)

Now I am showing that the function F(µ, ν; t) < 0 at t < tc where

tc = 1/
√
MgMr . (20)

Indeed, the function F cannot be positive, otherwise n̄m,n(t) would be exponentially large (as
a function of V ). Next, on differentiating F over µ and ν we arrive at two equations ∂µF = 0
and ∂νF = 0 determining the position of the maximum. It is easy to check that

(i) the maximum of the function F is located at the point µ = µc(t), ν = νc(t) in the plane
µ, ν, where

t = 1

νcMr

ln
1

1 − µc

= 1

µcMg

ln
1

1 − νc

. (21)

These equations have a nonzero solution only at t > tc.
(ii) The function F(µc(t), νc(t); t) = 0.

In order to elucidate the meaning of this result let us consider the Smoluchowski limit
(m/Mg, n/Mr −→ ∞) of the composition distribution (equation (16)). The concentration
cm,n(t) = n̄m,n(t)/V is then,

cm,n(t) = Mm
g Mn

r

Pm−1,n−1(0)

m!n!
tm+n−1 exp[−(mMr + nMg)t] (22)

(note that Pm−1,n−1(0) = mn−1nm−1).
The total mass concentrations of green and red monomers are seen to be expressed in

terms of X0(ξ0, η0) and Y0(ξ0, η0) as follows:∑
m,n

mcm,n(t) = t−1ξ0X0(ξ0, η0) = Mg[1 − µd(t)] (23)

and ∑
m,n

ncm,n(t) = t−1η0Y0(ξ0, η0) = Mr [1 − νd(t)], (24)

where the functions 1 − µd(t) and 1 − νd(t) define the deficit of the mass concentrations due
to formation of a gel particle. Other notation are ξ0(t) = Mgt e−Mr t and η0(t) = Mr t e−Mg t .

At δ = 0, the set of integral equations (15) reduces to a simple set of transcendent
equations, X0 = eηY0 , Y0 = eξX0 . Then equations (23) and (24) allow one to derive the set of
equations for µd and νd . This set is identical to equation (21), i.e. the deficits of the total mass
concentrations of green and red monomers coincide with µc and νc defining the position of
the maximum of F . This fact unequivocally provides evidence in favour of the formation of
one gel particle whose composition is defined by the set of equations (21).
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In the limit of large m, n the spectrum cm,n(t) takes the form

cm,n(t) ≈ 1

2π
Mm

g Mn
r m

n−m−1/2nm−n−1/2tm+n−1 exp[−(mν + nµ)t]. (25)

At t = tc = (µν)−1/2 and m
√

ν = n
√

µ the spectrum becomes powerlike,

cm,n(t) ≈
√

µν

2πm3/2n3/2
. (26)

Equation (25) allows us to derive the equation for the particle number concentration
N(t) = ∑

cm,n(t),

dN

dt
= −MgMr [1 − µc(t)νc(t)]. (27)

The main results of this letter can be summarized as follows:

1. The time evolution of a coagulating mixture with the model coagulation kernel
(equation (1)) has been investigated. Equation (16) expresses the exact composition
spectrum in terms of the polynomials Fm,n(x) introduced by recurrence (13).

2. It is shown that after the critical time tc = 1/
√

µν the gel appears in the system. Its
composition is determined by the set of equations (21).
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